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Abstract

We describe a symmetric variant of homomomorphic encryption
scheme by van Dijk et al. [DGHV10], semantically secure under the
error-free approximate-GCD problem. We also provide the imple-
mentation of the scheme as a C/C++ library. The scheme allows to
perform “mixed” homomorphic operations on ciphertexts and plain-
texts, eliminating the need to encrypt new ciphertexts using the public
key for some applications, specifically, in secure function evaluation
setting. Compared to the original scheme and other homomorphic
encryption schemes, the properties of the symmetric variant enable
for smaller communication cost for applications like privacy-preserving
cloud computing, and private information retrieval.
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Introduction

Fully homomorphic encryption (FHE) is a special kind of encryption that
allows arbitrary computations on encrypted data. The first FHE scheme was
shown to be possible in the breakthrough work by Gentry [Gen09] in 2009. A
number of other FHE schemes based on different hardness assumptions were
proposed since then [DGHV10, BGV12, Bra12, LTV12, FV12].

While the original scheme was based on ideal lattices [Gen09], van Dijk et al.
proposed a new FHE scheme [DGHV10] over the integers in 2010. Both these
schemes follow Gentry’s blueprint to achieve fully homomorphic property.
They are known as the first generation FHE.

The schemes produce similar “noisy” ciphertexts, where noise grows larger as
more homomorphic operations are performed on a given ciphertext. When the
noise reaches some maximum amount, the ciphertext becomes undecryptable.
Following Gentry’s approach, one first constructs a somewhat homomorphic
encryption scheme, i.e. scheme that is capable of evaluating a limited amount
of homomorphic operations before the ciphertext becomes undecryptable.
Secondly, one defines bootstrapping procedure that eliminates the noise in
ciphertexts (ciphertext refreshing). The procedure consists of homomorphic
evaluation of the scheme’s decryption circuit, which for a given ciphertext
results in a different encryption of the same plaintext with reduced noise.
Using bootstrapping, arbitrary binary circuits can be evaluated by refreshing
the ciphertexts before the noise reaches the threshold. The disadvantage of
this approach is that the bootstrapping procedure is very costly to perform.

To avoid bootstrapping, a new technique known as modulus switching was
introduced by Brakerski, Gentry, and Vaikuntanathan in 2012 [BGV12]. They
proposed a leveled FHE scheme, i.e. the one in which noise grows linearly
with multiplicative depth of the circuit. Such scheme, however, has huge
public key storage requirements. In 2012 Brakerski introduced the notion of
scale-invariance for leveled FHE schemes [Bra12] that allows to reduce the
storage significantly. This technique was applied to BGV scheme [BGV12] by
Fan and Vercauteren in 2012 [FV12] resulting in FV scheme, and was used to
construct a scheme called YASHE by Bos et al. in 2013 [BLLN13] based on
work from [LTV12]. The mentioned schemes [BGV12, Bra12, FV12, BLLN13]
as well as improved scheme by Gentry, Sahai, and Waters from 2013 [GSW13]
based on [Bra12, BGV12] are known as second generation FHE.
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Existing FHE mplementations One of the practical publicly available
implementations of FHE is the C++ library implementing the BGV scheme
[BGV12] with certain improvements [SV11, GHS12a] called helib [GHS12b].
There are also experimental implementations of the variant of DGHV scheme
in Sage [CNT12], and FV and YASHE in C++ [LN14].

Our contributions In this work we focus on somewhat homomorphic
DGHV scheme over the integers [DGHV10]. We notice that DGHV supports
“mixed” homomorphic operations on ciphertexts and plaintexts, which in the
context of secure function evaluation allows to eliminate the need for either
the client or the remote worker to encrypt all of the inputs of the algorithm,
implying symmetric setting. We then describe a symmetric variant of the
DGHV scheme as seen in [YKPB13], propose secure parameter constraints,
and provide its usable implementation as a C/C++ library.

Preliminaries

Generic Homomorphic Encryption Scheme

Whereas a regular public-key encryption scheme E consists of three algorithms
KeyGenE , EncryptE , DecryptE , a homomorphic encryption scheme additionally
includes homomorphic operations on ciphertexts that we denote as AddE and
MultE .
KeyGenE(1λ). Given a security parameter λ, output a public and private key

pair (pk, sk), where pk is a public key, and sk is a private key.
EncryptE(pk, m ∈ {0, 1}). Given a public key pk and a plaintext message

m ∈ {0, 1}, output ciphertext c ∈ C, where C is ciphertext space.
DecryptE(sk, c ∈ C). Given a private key sk and a ciphertext c =

EncryptE(pk, m), output original plaintext message m ∈ {0, 1}.
AddE(pk, c1 ∈ C, c2 ∈ C) (resp. MultE). Given a public key pk and two

ciphertexts c1 = EncryptE(pk, m1 ∈ {0, 1}) and c2 = EncryptE(pk, m2 ∈
{0, 1}), output ciphertext c′ ∈ C.

To be homomorphic, a scheme E = (KeyGenE , EncryptE , DecryptE , AddE , MultE)
has to be able to correctly evaluate some class of binary circuits.
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Definition (Correct Homomorphic Decryption). A scheme E with
security parameter λ is correct for a L-input binary circuit C composed of ⊕
(Add) and ∧ (Mult) gates, if for any key pair (pk, sk) = KeyGenE(1λ), and any
L plaintext bits m1, ..., mL ∈ {0, 1} and corresponding ciphertexts c1, ..., cL,
where ci = EncryptE(pk, mi), the following holds:

C(m1, ..., mL) = DecryptE(sk, EvaluateE(pk, C, c1, ..., cL)),

where EvaluateE simply applies AddE and MultE to the ciphertexts at corre-
sponding gates of the circuit C.
Definition (Homomorphic Scheme). We call scheme E (somewhat) ho-
momorphic if it is correct for any circuit C ∈ CE for some class of circuits CE .
We call scheme E fully homomorphic, if it is correct for any circuit C.

The Somewhat Homomorphic DGHV Scheme

Construction In this section we recall the DGHV somewhat homomorphic
encryption scheme over the integers proposed in [DGHV10], specifically the
variant with an error-free public key element. Four parameters are used to
control the number of elements in the public key and the bit-length of various
integers. We denote by τ the number of elements in the public key, γ their
bit-length, η the bit-length of the private key p, and ρ (resp. ρ′) the bit-length
of the noise in the public key (resp. fresh ciphertext). All of the parameters
are polynomial in security parameter λ.
For integers z, p we denote the reduction of z modulo p by (z mod p) or [z]p.
DGHV.KeyGen(1λ). Randomly choose odd η-bit integer p from (2Z + 1) ∩

(2η−1, 2η) as private key. Randomly choose integers q0, q1, ..., qτ each from
[1, 2γ/p) subject to the condition that the largest qi is odd, and relabel
q0, q1, ..., qτ so that q0 is the largest. Randomly choose r1, ..., rτ each from
(−2ρ, 2ρ). Set error-free public key element x0 = q0 · p and xi = qip + ri

for all 1 ≤ i ≤ τ . Output (pk, sk), where pk = (x0, x1, ..., xτ ), and
sk = p.

DGHV.Encrypt(pk, m ∈ {0, 1}). Choose a random subset S ⊂ {1, 2, ..., xτ}
and a random noise integer r from (−2ρ′

, 2ρ′). Output the ciphertext:

c =
[
m + 2r + 2

∑
i∈S

xi

]
x0
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DGHV.Decrypt(sk, c ∈ C). Output [c mod p]2.
DGHV.Add(pk, c1 ∈ C, c2 ∈ C). Output [c1 + c2]x0

DGHV.Mult(pk, c1 ∈ C, c2 ∈ C). Output [c1 · c2]x0

It was shown in [DGHV10] that scheme is somewhat homomorphic, i.e. a
limited number of homomorphic operations can be performed on ciphertext.
Specifically, roughly η/ρ′ homomorphic multiplications can be performed in
a way that the ciphertext is still correctly decryptable (the ciphertext noise
must not exceed p). The scheme can be extended to evaluate arbitrary circuits
using the bootstrapping technique [DGHV10].

Semantic security The security of the DGHV scheme described as above
is based on the error-free approximate-GCD problem. We use the following
distribution over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), Choose r ← (−2ρ, 2ρ) : Output x = q ·p+r}

Definition ((ρ, η, γ)-Error-Free Approximate-GCD). For a random
η-bit odd integer p, given x0 = q0 · p, where q0 is a random odd integer in
(2Z+ 1)∩ [0, 2γ/p), and polynomially many samples from Dρ(p, q0), output p.

The scheme is semantically secure if the error-free approximate-GCD problem
is hard [DGHV10]. Certain constraints have to be put on scheme parameters
in order to achieve λ-bit security.

Improvements The scheme has been improved a number of times since it
appeared. Public key compression techniques were introduced in [CMNT11,
CNT12], achieving public key size of 1GB and 10.1 MB respectively at the
72-bit security level. A modified scheme featuring batching capabilities
allowing for SIMD-style operations was proposed in [CLT13]. The most
recent improvement at the moment of writing is the SIDGHV scale-invariant
modification [CLT14] based on the techniques from [Bra12].
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The Symmetric Variant of DGHV Somewhat
Scheme

Construction

We now describe the symmetric variant of DGHV scheme with an error-free
public element as given in [YKPB13]. We denote by γ the bit-length of the
public key x0, η the bit-length of the private key p, and ρ the bit-length of
the noise in the public key and fresh ciphertexts. All of the parameters are
polynomial in security parameter λ.

SDGHV.KeyGen(1λ). Randomly choose odd η-bit integer p from (2Z + 1) ∩
(2η−1, 2η) as private key. Randomly choose odd q0 from (2Z+1)∩[1, 2γ/p),
and set x0 = q0 · p. Output (pk, sk) where pk = x0, sk = p.

SDGHV.Encrypt(pk, m ∈ {0, 1}). Choose random q from Z ∩ [1, 2γ/p], and a
random noise integer r from Z ∩ (−2ρ, 2ρ). Output the ciphertext:

c = [q · p + 2r + m]x0

SDGHV.Decrypt(sk, c ∈ C). Output [c mod p]2.
SDGHV.Add(pk, c1 ∈ C, c2 ∈ C). Output [c1 + c2]x0 .

SDGHV.Mult(pk, c1 ∈ C, c2 ∈ C). Output [c1 · c2]x0 .

The main difference compared to the original scheme is that only the noise-free
public element x0 is used, while all the other public key elements x1, x2, ..., xτ

are not used, i.e. τ is set to 0.

The scheme is clearly somewhat homomorphic, allowing to compute a lim-
ited amount of additions and multiplications. Note the SDGHV.Add and
SDGHV.Mult here can be used as mixed operations that take a ciphertext
and a plaintext as input, since both ciphertext space and plaintext space are
subsets of Z. Further explanations will follow.

Semantic security The scheme remains semantically secure if the error-free
approximate-GCD problem is hard.
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Attacks Given error-free public element x0 = q0p, factoring algorithms can
be used to find p. [KLYC13] gives overview of such attacks: elliptic curve
factoring method which runs in exp(O(η1/2)), and the general number field
sieve which runs in exp(O(γ1/3)). The following constraints must be used to
resist the attacks: η ≥ O(λ2), γ ≥ O(λ3).
Given x0 = q0 · p and set of xi = qip + r, 1 ≤ i ≤ n, Lagrasias algorithm
can be used to find p in O(2n/(η−ρ)) time. This can be resisted by choosing
γ/η2 = ω(log λ). For the case i = 1, the following attacks can also be
used: Chen-Nguyen [CN12] attack running in Õ(2ρ/2), resisted by requiring
ρ > O(λ), and Howgrave-Grahan [HG01] attack, resist by requiring γ > η2/ρ
[KLYC13].

Note that the parameters chosen for benchmark in [YKPB13] are not secure
at the declared level against current approximate-GCD attacks (as also briefly
noted in [DC14]). Secure parameter constraints and a proposed parameter
set are given below.

Parameter selection We propose to use the following parameter con-
straints:

• ρ = Õ(λ) to secure against the Chen-Nguyen attack [CN12].
• η = Ω̃(λ2 + ρ · L) to resist factoring attacks and allow evaluation of L

successive multiplications.
• γ = η2ω(logλ) to resist factoring attacks and the Howgrave-Grahan

[HG01] attack

A convenient parameter set could be defined as follows: ρ = 2λ, η = O(λ2 ·
L), γ = O(λ5 · L2).

Motivation

The variant was proposed in [YKPB13] for the purpose of constructing a
practical single-server computational private information retrieval protocol.
The authors noticed that the generic PIR protocol they outlined didn’t require
encrypting new integers on the server side, implying the public key elements
x1, x2, ..., xτ only used in encryption procedure could be omitted. Obtained
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symmetric scheme has improved the protocol’s communication overhead due
to the absence of all of the public key elements except the error-free element,
while enabling to efficiently evaluate the server-side PIR retrieval algorithm.

The key feature of the SDGHV scheme that allows to avoid encryptions on the
server-side is the ability to perform “natural” mixed homomorphic operations
on plaintext and ciphertext:

SDGHV.Add(pk, c ∈ C, m ∈ {0, 1}). Output [c + m]x0 .

SDGHV.Mult(pk, c ∈ C, m ∈ {0, 1}). Output [c ·m]x0 .

Indeed, we can see that the mixed operations are correct (for a certain
number of operations). Given the private key p, public key x0, some messages
m, m′ ∈ {0, 1}, and a ciphertext c = SDGHV.Encrypt(x0, m) = [q ·p+2r+m]x0 :

SDGHV.Decrypt(p, SDGHV.Add(x0, c, m′)) = SDGHV.Decrypt(p, [c + m′]x0)
= SDGHV.Decrypt(p, [q · p + 2r + m + m′]x0)
= [2r + m + m′]2
= m⊕m′,

if m + m′ + 2r < p. Analogically,

SDGHV.Decrypt(p, SDGHV.Mult(x0, c, m′)) = SDGHV.Decrypt(p, [c ·m′]x0)
= SDGHV.Decrypt(p, [m′ · (q · p + 2r + m)]x0)
= [2rm′ + m ·m′]2
= m ∧m′

We can see the number of homomorphic additions in the form c + m′, where
m′ ∈ {0, 1}, is limited to p−2r−m for a specific ciphertext c = [q ·p+2r+m]x0 .

Notes on applying existing DGHV improvements Batching tech-
niques as described in [CLT13, KLYC13, CCK+13] could be applied to
SDGHV scheme, but the mixed homomorphic operations correctness would be
lost if CRT batching were used. Ciphertext compression techniques [CNT12],
was applied in our implementation in order to decrease the communication
cost in SFE setting.
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Implementation

The scheme was implemented as a C++ library using GNU Multiprecision
(GMP) for big integer arithmetics computations and Boost for testing and
serialization. The implementation is publicly available on the Github [Kul15].
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