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Building Provably Reliable, Safe, and Secure AI

When a hospital’s machine-learning model recommends against a medical procedure, a bank’s algorithm denies a loan,
a large language model answers a legal question, we might ask: Would the outputs of these models change if the inputs
were slightly different? Could a malicious actor manipulate the outcomes? If these models are trained on sensitive records
and shared externally, could they leak private information? How can we be sure about the correctness of their outputs?
As AI systems become critical infrastructure in high-stakes domains, practitioners need reliable answers to these questions
to deploy them confidently and at scale. Yet, unlike other mainstream technologies, there are few aspects of AI systems’
functionality we can be sure about, limiting their adoption. My research develops formal foundations to ensure AI systems
are provably reliable, safe, and secure, enabling their responsible adoption in high-stakes settings.

To achieve this, I work at the intersection of theory and practice as an applied theorist: I leverage the formal toolboxes
of statistical theory, information theory, and optimization to design methods with practically relevant and useful
guarantees for (i) evaluating AI system functionality and (ii) building the systems with assurances from the ground up. I
identify existing theoretical tools, develop, and adapt them to be applicable and relevant in practice. In the past, I have applied
this approach to various aspects of AI functionality where principled evaluations and guarantees are crucial, such as privacy,
security, fairness, contestability, and recourse. To address the challenges faced by practitioners in the real world, I joined
Lausanne University Hospital for my postdoctoral research, where I continue applying my translational approach to ensure
responsible development of AI systems in healthcare. Let me summarize my past work across three high-level areas:

1 Foundations of practical privacy protection. Machine-learning models memorize their training data, making it
possible for malicious actors to extract sensitive information from models and their outputs. I investigated differential
privacy—a standard method for provably protecting against data leakage through controlled noise addition—and found
it has both beneficial and negative side effects: although it makes model performance more predictable overall by
providing strong information-theoretic generalization guarantees [NeurIPS’22], it also causes arbitrary decisions at the
individual level by increasing predictive multiplicity [FAccT’23]. I developed methods for making differential privacy
more interpretable and useful by leveraging new numeric methods for analyzing its guarantees [NeurIPS’24]. Beyond
differential privacy, I showed how information leakage can disproportionately affect different demographic groups and
how to address this problem using principled statistical evaluations [PETS’22], and used information-theoretic analyses
to establish the fundamental limits of obfuscation-based methods which scramble individual records [ICML’24].

2 Adversarial robustness, contestability, and recourse. When automated systems are involved in high-stakes decision-
making processes, e.g., in approving loans, benefits, care, jobs, or granting parole, people should have legitimate ways
to influence and contest unfair or wrong automated decisions. I systematized and formalized ways in which people
attempt to obtain better outcomes from automated systems [FAccT’20], and developed methods to simulate these strate-
gic behaviors using discrete optimization [NDSS’23]. I used mixed-integer linear programming to build tools for for-
mally certifying when such interventions are possible [ICLR’24], finding that existing tools for algorithmic recourse—
recommending actions that should enable people to rectify a negative outcome, e.g., get a loan once rejected—often fail.
The methods of this line of work are general and are applicable to multiple problems: in security, to test models for ro-
bustness to manipulations; in explainability, to interpret model predictions using counterfactual “what if” explanations;
and in fairness, to analyze whether predictions change when demographic attributes change.

3 Real-world applications in healthcare AI. As a research scientist at Lausanne University Hospital, I have been
collaborating with medical informatics practitioners and clinicians to ensure reliability, safety, and security of AI in
healthcare. I have been developing guidelines for trustworthy AI in medicine [JMIR’25], and evaluated realistic deploy-
ment scenarios for large language models in healthcare [NeurIPS WS’24] through a collaboration with 30 clinicians
across 11 hospital departments. I surveyed and systematized methods for evaluating and ensuring privacy and utility
of generative models for medical synthetic data generation [npj Digital Medicine’25], finding widespread issues such
as the usage of conflicting metrics and privacy evaluations that have been shown to be ineffective. Recently, I have
solved a long-standing open problem: ensuring that machine learning models trained on sensitive data provably satisfy
interpretable privacy risk requirements using a novel analysis of differential privacy [NeurIPS’25].

There is still much work to be done. The provable privacy guarantees we can provide are still overly pessimistic for, e.g.,
the needs of medical practitioners, and thus still hurt utility more than necessary. We have barely scratched the surface
of evaluating the robustness of models in high-stakes domains to manipulations or input fluctuations. I aim to continue
working in these areas, and collaborate broadly with researchers and practitioners across disciplines to stay grounded to
real-world challenges in high-stakes domains. Moreover, I aim to expand to cover other aspects of AI functionality which
require assurances, such as uncertainty quantification and explainability. I detail more on past work and future plans next.
Impact. I presented my research at multiple invited seminars both in industry (e.g., Microsoft, Google) and academic in-
stitutions (e.g., MIT, University of Toronto, University College London, European Organization for Research and Treatment
of Cancer). My work has received a spotlight distinction at the 2024 International Conference on Learning Representations
(ICLR) and a best paper award at the 2024 NeurIPS Generative AI for Health Workshop. Building on my results on interpretable
privacy-preserving machine learning [NeurIPS’24], I secured a USD 125,000 Swiss National Science Foundation Spark grant
as PI to operationalize the findings, and substantially contributed to successful proposals for a USD 28,000,000 EU Horizon
Europe project on synthetic data, and a USD 1,250,000 Swiss National Science Foundation project on language modeling in
healthcare. My work on principled evaluation of a Twitter image processing system, based on my research on evaluating
machine learning under manipulations, has won the first place at Twitter’s 2021 algorithmic bias challenge, and has received
media coverage (e.g., in The Guardian, Wired, and The Verge).
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Foundations of practical privacy protection

Machine learning models can memorize and potentially leak information about their training data [Carlini et al., 2021].
Consequently, if these models are trained on sensitive data, privacy concerns emerge. This is particularly critical in high-
stakes domains such as healthcare, finance, and criminal justice, where training data often contains personal information
protected by laws and ethical guidelines. In this line of work, I study several aspects of privacy in machine learning from two
related perspectives. First, understanding the intrinsic capabilities and limits of methods that aim to protect privacy. Second,
assessing the interaction and trade-offs between privacy, utility, and fairness.
Unequal distribution of privacy vulnerabilities. To better understand who is most affected by privacy risks, I led a study
investigating how vulnerable different groups are to attacks against privacy [PETS’22]. We found that some demographic
groups are substantially more vulnerable to having their private information exposed than others. This work provided the
first analysis of these disparities in privacy risks and developed methods for measuring them effectively. This observation has
legal consequences: we show that determining whether models or their outputs constitute personal data under, e.g., GDPR,
requires disaggregated analyses across demographic groups, in contrast to the established practice of evaluating the risk on
average across the population.
A standard way to ensure that ML models cannot leak information about their sensitive training data is a formal framework
called differential privacy [Dwork et al., 2006, 2014]. To achieve this privacy protection, one has to add a controlled level of
random noise during model training [Chaudhuri et al., 2011; Abadi et al., 2016].
Differential privacy, reliability, and arbitrary predictions. I led a study which uncovered a side effect of this approach:
The introduction of randomness leads to arbitrary model predictions [FAccT’23]. Concretely, some predictions end up de-
pending entirely on the random noise rather than meaningful patterns in the data—technically, making the Rashomon set,
the set of plausible models that the training algorithm could output, more noisy. Theoretically and empirically, we showed
that stronger privacy protections lead to more arbitrary decisions, affecting different demographic groups unequally. This
poses a fundamental concern for using such methods in critical applications in domains such as healthcare. In another study
I have co-led, we empirically demonstrated that this noise also has a surprising benefit: ensuring that multiple aspects of
model behavior remain consistent between training and deployment, i.e., strong generalization guarantees beyond just aver-
age training and test-time loss [NeurIPS’22]. We used this finding to build more reliable deep neural networks which provide
a provable guarantee that the performance observed at train time is what one gets at test time, a property that in general does
not hold for deep neural networks.
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Figure 1: We perform privacy-preserving (differen-
tially private) fine-tuning of a language model in a
text classification task. Our method shows that the
maximum privacy risk is substantially lower than
what the standard method indicates. As a result, to
calibrate the model to a given level of risk, we need
to add substantially less noise, thus model’s accu-
racy increases from 52% to 70% at even lower privacy
risk [NeurIPS’24].

Achieving better utility with interpretable privacy guarantees.
To address the challenges of noise addition, I co-led the develope-
ment of new “attack-aware” methods for calibrating the level of
noise [NeurIPS’24]. In practice, we often want to evaluate the op-
erational privacy risks: what is the maximum possible success rate
of various attacks that aim to infer information about the training
data. In contrast, the standard practice in differential privacy is to use
the privacy parameter known as ε, which is not immediately inter-
pretable in operational attack-aware terms. We showed that existing
methods for mapping ε to operational risk are extremely ineffective.
As a result of this inefficiency, if one needs to ensure that the mod-
els trained with differential privacy ensure a certain level of opera-
tional risk—as is often required in tightly regulated domains such as
healthcare and finance—we need to add more noise than is necessary,
often destroying the utility of models. To address this, we developed
techniques to calibrate the noise in a way that directly provides guar-
antees on a level of interpretable operational privacy risk. This ap-
proach significantly reduces the amount of noise needed at the same
level of risk, leading to better model performance without compro-
mising on privacy, e.g., an improvement from 52% to 70% accuracy in
a language modeling task (see Figure 1). I further led a study adapting
this approach [NeurIPS’25] to capture the notions of risk that appear
in data-protection guidelines—with more details next.

Future directions: Bridging the theory and practice of data privacy protection. Privacy of training data in machine learning
is a systematic issue in high-stakes settings, which typically involve sensitive data. Although differential privacy is a mature
theory in computer science, as I have learned at Lausanne University Hospital, it is rarely used in practice even when privacy
guarantees are legally and ethically mandated. A critical barrier to adoption of differential privacy in high-stakes domains is
that the added noise results in significant side effects such as degradation of model performance. In this direction, I will use
my experience with differential privacy [NeurIPS’22; PETS’22; FAccT’23; NeurIPS’24; NeurIPS’25] to (i) introduce and study
context-specific relaxations of differential privacy that provide meaningful formal privacy guarantees while carefully defining
and measuring utility beyond simple accuracy metrics. A critical challenge is that standard differential privacy can have
harmful effects on fairness—for instance, disproportionately degrading performance for minority groups or even effectively
removing underrepresented populations from datasets. I will develop methods that take into account the joint privacy, utility,
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and fairness considerations, ensuring that privacy protections do not come at the cost of exacerbating existing disparities.
Additionally, (ii) I will develop new relaxed approaches to defining privacy that do not require randomness—instead relying
on obfuscation of records—using our recent principled information-theoretic formulations [ICML’24]. These two directions
would provide a sweet spot for improving adoption of privacy-preserving learning in practice, as they both would reduce
the inherent performance degradation while explicitly addressing fairness and reliability concerns, yet still provide useful
privacy guarantees.

Adversarial robustness, contestability, and recourse

In a series of works [NeurIPS WS’18a; FAccT’20], I showed how techniques traditionally viewed as “attacks” on ML systems—
manipulating the inputs to a model in order to achieve a desired output—can actually serve either as tools for legitimate
contestation of unfair or harmful decisions, or providing recourse to denied resources. If Alice has her loan application
denied, what does she need to change about her application to get it approved? For complex ML-based decision-making
systems, this is not trivial to answer, and requires algorithmic approaches. These works were among the first in an emerging
line of research on contesting and affecting algorithmic systems externally, now known as algorithmic collective action.
Robustness of ML models to realistic input manipulations. Taking a step back to examine this problem from first
principles, I identified that the core technical problem needed to understand whether decision-making systems can be legit-
imately affected is the same technical problem as evaluating robustness to adversarial manipulations [ICML WS’21]. Most
tools available in the robustness literature, however, are not adapted to realistic constraints faced by people seeking recourse
or contestation, and are thus not useful to evaluate whether model decisions can be affected in practice. Specifically, the
standard approach is to start from a real input and find a perturbation which flips the model’s decision at minimal, e.g., L2

distance, to the initial input. Although this approach is mathematically convenient, it does not model realistic constraints
well. For example, a realistic change to actionable features about a lending profile of a person to change the model’s loan
decision need not have a small L2 distance to the initial input, and might instead be constrained by feasibility (e.g., one cannot
decrease their age), effort (e.g., changing employment might be costly), or time (e.g., building credit history takes years). To
address this issue, I co-led studies [NeurIPS WS’18b; NDSS’23] to design optimization methods which evaluate robustness
of models to realistic, practical input manipulations. We do so by incorporating generic cost constraints as opposed to the
standard geometric distances, and posing the problem as graph search.

Method
Failure mode DiCE Ours

Loophole 34.4% 0.00%
Blindspot 21.0% 0.00%

Figure 2: Common methods (here we show
DiCE [Mothilal et al., 2020]) to find counterfac-
tual explanations or recourse—actions through which
people can change the model’s negative decision
(loan denied) into a positive one (loan accepted)—
often fail. They either find loopholes (infeasible
actions, e.g., decrease age), or have blindspots (do
not find an action when one exists) [ICLR’24].

Certifying algorithmic preclusion. Most recently, I discovered
a fundamental issue: ML models deployed in high-stakes settings
make predictions using features that people cannot ever meaningfully
change, effectively “fixing” the negative outcomes [ICLR’24] (spot-
light distinction). Even though there exist certain methods for testing
for responsiveness in such contexts [Ustun et al., 2019; Mothilal et al.,
2020], we showed that existing methods systematically miss the cases
in which outcomes cannot actually be changed or return actions that
are actually infeasible (see Figure 2). For example, a loan-approval
system might use factors that an applicant has no practical way to im-
prove, permanently excluding them from access to credit once denied.
To address this, we developed methods to formally verify whether
people can actually achieve better outcomes through feasible actions
(i.e., realistic changes they can make, as opposed to infeasible manip-
ulations like decreasing their age), introducing the concept of “reach-
able sets”—the collection of all situations a person could reasonably
achieve with realistic actions. We then used mixed-integer linear programming solvers to certify feasibility within those
reachable sets in discrete domains. In work currently in submission, we have developed extensions of the method to support
continuous and high-dimensional feature spaces, enabling certification for real-world models [preprint’25].

The cited approaches [NDSS’23; ICLR’24] rely on different low-level algorithms, yet share the common principle of mod-
eling realistic constraints faced by decision subjects. These algorithms are thus applicable beyond the problem of recourse. As
case studies, we applied the methods to evaluate robustness to adversarial manipulations in content moderation, stability to
natural measurement noise in kidney transplant risk models, counterfactual fairness—how much do predictions change under
changes to sensitive attributes—and counterfactual explanations—explanations showing what needs to be changed about the
input to yield a different model prediction—in recidivism prediction [preprint’25].

Future directions: Certifying reliability and safety. Regulations, e.g., those covering software as a medical device, require
demonstrable evidence that high-risk AI systems perform reliably. For instance, a reliable medical model’s prediction should
not change erratically due to minor, irrelevant fluctuations in its input (e.g., sensor noise) or arbitrary choices during its
training process (e.g., the random seed for weight initialization). Yet, standard performance metrics such as accuracy cannot,
by definition, capture such notions of stability. This is a critical issue in ML deployments in high-stakes settings. Without
guarantees on stability, model predictions are fragile and potentially untrustworthy. My research established two approaches
to formally certify two distinct types of model stability. First, using techniques from [NDSS’23; ICLR’24; preprint’25], we can
provide certifiable guarantees of a model’s stability to input perturbations, proving that for a given range of changes to its
input, its output will remain within a bounded region. Second, using another technique [FAccT’23], we can certify a model’s
stability to train-time interventions—arbitrariness—determining if a prediction is a robust outcome of the learning process
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or an artifact of a specific random initialization. In the future research, I aim to apply these techniques to language models
and predictive models for high-stakes tasks to (i) certify the input and training stability, and (ii) to produce counterfactual
explanations and counterfactual fairness evaluations. The certificates of stability can provide reliable answers to questions
like “the diagnosis would have been the same even if the patient’s blood pressure was 5% higher” or “would this transplant
risk model had a different prediction if the patient’s age was different.” This enables operational uncertainty quantification
for abstaining when the model is uncertain (a prediction’s instability indicates high uncertainty). Overall, these frameworks
will enable practitioners to verify and attest to reliability before deployment, and support regulatory compliance.

Real-world applications in healthcare AI

In my current role at Lausanne University Hospital, I am translating the insights from prior work into healthcare practice. This
work spans multiple collaborative projects, including solving open problems in privacy-preserving synthetic data generation.
AI in healthcare—understanding which use cases are appropriate and which are not. I am contributing to a large-
scale participatory assessment of Large Language Model applications at Lausanne University Hospital [NeurIPS WS’24] (best
paper award at NeurIPS GenAI in Healthcare workshop), working with thirty stakeholders across 11 departments to identify
potential use cases and assess their feasibility. We found that the applications that are most commonly studied in the academic
literature, such as clinical decision-support systems, are the least likely to be deployed due to constraints with respect to in-
frastructure, data protection, and medical-device regulation. In contrast, applications focused on administrative tasks, such
as documentation and workflow optimization, are more feasible for near-term deployment. This gap between research prior-
ities and practical deployment possibilities is important because it highlights a fundamental misalignment: the field invests
heavily in studying applications that hospitals cannot readily adopt, while more deployable use cases remain understudied.
Reliable and privacy-preserving medical generative modeling. Another major focus of mine has been evaluating med-
ical generative models which generate synthetic data designed to mimic real patient data while preserving privacy. Through a
scoping review [npj Digital Medicine’25], my collaborators and I identified significant gaps in how the biomedical field eval-
uates privacy and utility of synthetic data, demonstrating the lack of consensus and lack of reliable tools for evaluating both
utility and privacy in synthetic data. We also conducted empirical studies that challenge the widely-held assumption that
synthetic data can effectively reduce bias in real datasets. Our research on clinical prediction tasks [MIE’24a] demonstrated
that augmenting real data with synthetic data to reduce bias rarely outperforms simple baseline approaches.

Moreover, our review found that privacy risks in synthetic data are often underestimated. In response, I led a study which
solved a long-standing open problem: how to use differential privacy to create private-by-design generative models that are
compatible with existing data-protection guidelines, e.g., from the International Standards Organisation (ISO), or European
Medicines Agency’s guidelines on the implementation of GDPR. For this, I adapted the tools from my Ph.D. research on
attack-aware noise calibration [NeurIPS’24] to ensure that we can calibrate algorithms to interpretable notions of risk that
often appear in the data-protection guidelines, such as re-identification, inference, and data reconstruction risks, in a way that
allows for high utility [NeurIPS’25]. We showed that with prior methods for doing so, it is rarely possible to attain reasonable
utility and reasonable level of privacy risk at the same time, something that our method solves (see Figure 1). Consequently,
certain long-standing intuitions that were formed about differential privacy in the last decades of translation efforts—that it is
not possible to have a low level of interpretable risk with high utility—turned out to be artifacts of inefficient ways to analyze
differentially private algorithms.
Futurework: Interdisciplinary collaborations. Responsible AI research cannot be done in isolation from the domains where AI
is deployed. My approach, established through my work at Lausanne University Hospital, centers on participatory methods
that involve domain experts, affected communities, and regulators. For example, my assessment of language models [NeurIPS
WS’24] revealed that these systems are likely inappropriate due to regulatory, practical, and ethical constraints—insights only
possible through collaboration with 30 stakeholders across 11 hospital departments. This methodology ensures my technical
contributions address broader ethical issues. I aim to continue using such approaches in my future work.
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