ClaimChain

A Decentralized Public Key Infrastructure based on Cross-Referenced Hash chains

Marios Isaakidis, George Danezis @ UCL **Bogdan Kulynych**, Carmela Troncoso @ IMDEA December 28, 2016

bogdankulynych.me/33c3

Bogdan Kulynych

PhD student, IMDEA Software Institute, Madrid

Twitter: @hiddenmarkov

Email: bogdan.kulynych at imdea.org

NEXTLEAP project nextleap.eu

Goals

ClaimChain basics

Cross-Referencing

Supporting infrastructure

Privacy and Security

Goals

- Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets..
- · Multi-device support
- Better handling of key compromisation/loss
- · Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - · Also vouching for the "state" of a PGP key

- Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- Multi-device support
- Better handling of key compromisation/loss
- · Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - Also vouching for the "state" of a PGP key

- Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- Multi-device support
- Better handling of key compromisation/loss
- · Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - · Also vouching for the "state" of a PGP key

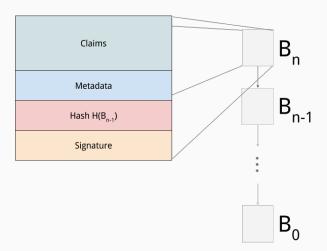
- · Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- Multi-device support
- · Better handling of key compromisation/loss
- · Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - Also vouching for the "state" of a PGP key

- · Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- Multi-device support
- · Better handling of key compromisation/loss
- · Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - Also vouching for the "state" of a PGP key

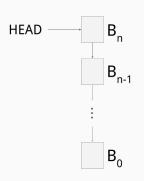
- Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- Multi-device support
- Better handling of key compromisation/loss
- Interoperability with legacy agents
- Better Web of Trust
 - · Privacy of the social graph
 - · Also vouching for the "state" of a PGP key

- Frequent key updates
- · Support for ephemeral keys, OTR, Bitcoin wallets...
- · Multi-device support
- Better handling of key compromisation/loss
- Interoperability with legacy agents
- · Better Web of Trust
 - · Privacy of the social graph
 - · Also vouching for the "state" of a PGP key

ClaimChain basics


- Key material
 - · Signature key
 - · Recovery key
- · Generic things
 - · Encryption keys
 - · Signal prekeys
 - · Identity in social nets / emails
- Revocations
- Cross-references (will get back to this)

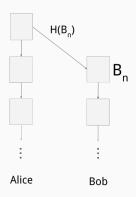
- Key material
 - Signature key
 - · Recovery key
- Generic things
 - · Encryption keys
 - · Signal prekeys
 - · Identity in social nets / emails
- Revocations
- Cross-references (will get back to this)


- Key material
 - · Signature key
 - · Recovery key
- Generic things
 - · Encryption keys
 - Signal prekeys
 - · Identity in social nets / emails
- Revocations
- Cross-references (will get back to this)

- Key material
 - Signature key
 - · Recovery key
- Generic things
 - · Encryption keys
 - · Signal prekeys
 - · Identity in social nets / emails
- Revocations
- Cross-references (will get back to this)

Hash chains of claims

Claim chain imprint



Imprint is a hash of the chain head: $H(B_n)$

- Compact representation of the chain state
- Can verify the integrity of the chain top to bottom
- Signatures allow to verify new blocks

Cross-Referencing

Cross-referencing

- Alice commits to an imprint of Bob's chain
- Resulting in WoT which also tracks the updates of chains

Social evidence processing policy

Validating someone's claim chain need to involve social verification to detect forks (compromise) or fake imprint.

- · A client decides a set of other nodes they choose to trust
- · Defines client's the trust model

Social evidence processing policy

Validating someone's claim chain need to involve social verification to detect forks (compromise) or fake imprint.

- · A client decides a set of other nodes they choose to trust
- Defines client's the trust model

Social evidence processing policy

Validating someone's claim chain need to involve social verification to detect forks (compromise) or fake imprint.

- · A client decides a set of other nodes they choose to trust
- · Defines client's the trust model

Supporting infrastructure

Storage infrastructure

Options to distribute the claim chains:

- · Peer-to-peer / In-band
 - · Not efficient
- · Centralized storage / the Cloud
 - · Can be highly available
 - Easy to deploy
 - No need to trust for integrity!
 - Privacy problems
 - Other security problems
- DHT, etc.

Chains can be stored in KV stores with $K = H(B_i), V = B_i$.

Storage infrastructure

Options to distribute the claim chains:

- · Peer-to-peer / In-band
 - · Not efficient
- · Centralized storage / the Cloud
 - · Can be highly available
 - · Easy to deploy
 - · No need to trust for integrity!
 - · Privacy problems
 - Other security problems
- DHT, etc.

Chains can be stored in KV stores with $K = H(B_i), V = B_i$.

Storage infrastructure

Options to distribute the claim chains:

- · Peer-to-peer / In-band
 - · Not efficient
- · Centralized storage / the Cloud
 - · Can be highly available
 - · Easy to deploy
 - · No need to trust for integrity!
 - Privacy problems
 - Other security problems
- · DHT, etc.

Chains can be stored in KV stores with $K = H(B_i), V = B_i$.

- In-band
 - Opportunistic encryption-like
 - · Easy to deploy
 - · No availability
- Centralized
 - · Privacy problems
 - Can be highly available
- · Gossiping, DHT, The Blockchain, etc

- In-band
 - Opportunistic encryption-like
 - · Easy to deploy
 - No availability
- Centralized
 - · Privacy problems
 - Can be highly available
- · Gossiping, DHT, The Blockchain, etc

- In-band
 - Opportunistic encryption-like
 - · Easy to deploy
 - No availability
- Centralized
 - · Privacy problems
 - Can be highly available
- · Gossiping, DHT, The Blockchain, etc

- In-band
 - Opportunistic encryption-like
 - · Easy to deploy
 - · No availability
- Centralized
 - · Privacy problems
 - Can be highly available
- · Gossiping, DHT, The Blockchain, etc.

Privacy and Security

Access control

- Clients can encrypt blocks so that only chosen groups can read them
- Naive way encrypt blocks with a session key, encrypt session key with other people public keys
- · Attribute-based or predicate-based encryption

Query privacy

Centralized storage infrastructure or state tracking mechanism can learn the social graph

- Privacy through anonymity
- · Dummy queries
- · Private information retrieval
 - · Not practical
 - Relaxed PIR hard to deploy

Summary

ClaimChain:

- Put claims of any nature, mainly cryptographic material, in high-integrity stores
- · Clients commit to states of other chains
- Each client defines their source of authority about states
- Complementary to opportunistic encryption efforts
- Allow to be stored on untrusted storage
- · Other than setting social policy, can be made automatic

Bogdan Kulynych

PhD student, IMDEA Software Institute, Madrid

Twitter: @hiddenmarkov

Email: bogdan.kulynych at imdea.org

NEXTLEAP project nextleap.eu